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The time dependence of mean current demities after a step change in the concentration of a de­
polarizer on the surface of a working electrode was found by solving the equations of the con­
vective diffusion in the Couette flow with anomalous wall effects. The theory is used for deter­
mining the velocity profile in the vicinity of the electrode surface. 

Significant changes in flow properties of polymer meltsl, polymer solutions2 , sus­
pensions3 and other rheologically complex fluids in an immediate vicinity of the 
wall - the so called wall, resp. slip effects - belong to well-known manifestations 
of the microdispersion structure of these liquid materials. These effects may exhibit 
a strong influence on results of viscometric measurementsl - 4 as well as on the 
intensity of mass or heat transfers ,6 . 

Slip effects can be characterized by the velocity of the apparent (positive or nega­
tive) slip along the wall1 •3 •4 or by the apparent thickness of the wall layer2 •s.6 (which 
contains pure solvent or the adsorbed polymer layer). Existing experimental data 
whether obtained by viscometric techniques l - 4 or by measuring the mass transfer 
intensitys.6, do not enable to distinguish between the two model representations 
of the velocity profile at distances from the wall surface smaller than 10-100 11m. 

A detailed study of the velocity field in an immediate vicinity of the wall is made 
possible by employing methods developed in the electrochemical diagnostics of flow 
which have been described generally, e.g., in a survey'. Their main advantage in com­
parison with other techniques for investigating the mass transfer intensitys.6 is in the 
precise measurement of instantaneous local mass transfer coefficients. The relation 
between the observed instantaneous local intensity of the electric current, I, and the 
corresponding diffusion flux J of the active component, the so called depolarizer, 
is given by Faraday's law 

I = vFJ. (l) 
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Since, at conditions ofthe so called limiting diffusion current, the intensity of trans­
fer of the depolarizer is controlled solely by the convective diffusion and the boundary 
conditions are expressed through concentrations of the depolarizer, the theory 
of convective diffusion forms the exhaustive theoretical basis for the electrochemical 
diagnostics of flow. 

We can employ these methods for investigating the velocity profile in an immediate 
vicinity of the wall essentially in two ways. The first possibility consists in determining 
the longitudinal profile of transfer coefficients at conditions of a steady convective 
diffusion; see, e.g., Eq. (3.12) in the survey7. In the second case, we can determine 
the time dependence of mean transfer coefficients after the step change in the 
depolarizer concentration on the surface of the measuring electrode due to a step 
change in the polarizing voltage. This second possibility has been demonstrated 
experimentally by determining slip velocities in the flow of bentonite suspensions 
in a rotational viscometer with coaxial cylindersB. In this work we formulate the 
necessary theory for the simplest form of the working electrode. 

THEORETICAL 

THE MATHEMATICAL MODEL OF THE PROCESS 

Let us consider a non-steady mass transfer between a planar wall, z = 0, and a liquid 
flowing paralelly to this wall in the direction of axis x. This steady flow is fully de­
termined by the velocity profile Vx = u(z), where z is the distance from the wall. 
The part of the wall which is active in the transfer, i.e., the electrode, is an infinite 
band of width L and oriented perpendicularly to the direction of the flow, Y E 

E(-OO; (0), xE(O,L). 

At time t < 0, the concentration c of the active component (depolarizer) on the 
electrode surface is identical with the constant concentration, Co, of the depolarizer 
in the surrounding liquid. No mass transfer occurs between the electrode and the 
liquid. The reason for the unsteady mass transfer is the step change in the concentra­
tion on the electrode surface at t = ° from the value of c = Co to, let us say, c = 0. 

If we neglect the effect of the longitudinal diffusion (which is a reasonable approxi­
mation for all really possible cases of forced convective diffusion in liquids at values 
of the diffusion coefficient D below 10- 9 m2Js), the mathematical model of the 
process considered is described by the following 3-dimensional linear boundary­
-value problem of the parabolic type for the concentration field c = c(z, x, t) 

D a;zc - u(z) (\c - (\c = ° (z > 0, t > 0, ° < x < L) (2) 

Collection Czechoslovak Chern. Commun. [Vol. 491 [1984] 



Diagnost;c of Anomalous Rheodynamical Wall Effects 

with the boundary conditions 

c = Co for t < 0 or z -> 00 or x < 0 

C = 0 for t > 0 and z = 0 and x > 0 
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(3a) 

(3b) 

This boundary-value problem admits the two following asymptotic solutions, 
analogically to the case of the simple shear flow, u(z) = Az (the Leveque configura­
tion), which has been studied earIier9 . 

At t -> 0, the initial asymptotic solution can be found by a simplification of problem 
(2), (3a,b) if we assume that oxc = o. The corresponding asymptote c:::::: ci(z, t) 
is the solution of the 2-dimensional problem 

Ci = Co for t < 0 or z -> 00 

Cj = 0 for t > 0 and z = 0 . 

(4) 

(5a) 

(5b) 

At t -> 00, a steady asymptotic solution can be found by a simplification of problem 
(2), (3a,b) if we assume that OtC = o. The corresponding asymptote c :::::: c.(z, x) is the 
solution to the 2-dimensional problem 

Cs = Co for x < 0 or z -+ 00 

Cs = 0 for x > 0 and :: = 0 

(6) 

(7a) 

(7b) 

Somewhat surprisingly, nevertheless quite obviously, the complete solution to the 
original 3-dimensional problem can be expressed in the form of 

{ 
Ci(Z, t) ; 

c(z, x, t) = 

cs(z, x) ; 

t < 8(z, x) 
(8a,b) 

t > 8(Z, x) 

in all cases when, for each z > 0, x > 0, the equation 

(9) 

possesses only one root 8 = 8(z, x). The parameter 8 then gives the time of the 
stabilization of the concentration at given point (z, x). The corresponding expression 
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for-the instantaneous local diffusion fluxes, J = J(x, t), is 

(lOa,b) 
t > e., 

where ew = lim e(z, x) can be determined either as the corresponding limit from (9) 
Z~O 

or, more simply, as the root ew of the equation 

(11) 

which follows from (9) by using L'Hospital's rule. 

SIMILARITY CASES 

A simple solution to the 2-dimensional problem (6), (7a,b) of steady-state convective 
diffusion can be constructed for velocity profiles represented by the power-law 
function 

u(z) = Azp. (12) 

Here it holds 7 

(13) 

( Aq)q 
~ = z Dx (14) 

the function fp is the integral of the differential equation f;(y) + y1+ P f~(Y) = 0 
with the initial conditions fp(O) = 0, f~(O) = 1 and it can be expressed explicitly as 

(15) 

with 

q = 1/(2 + p). (16) 

Obviously it holds fpC (0) = r(q + 1)/qq. 

According to Eqs (lOb), (13), steady local diffusion fluxes can be expressed through 
the relation 
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where for P = PCp), it holds 

P = q2(1tl/2jr(q + l))1/q. (18) 

Similarly, the well-known7 solution to the 2-dimensional problem (4), (Sa,b) 
yields the following expression for the instantaneous diffusion fluxes during the 
initial phase of the transient process: 

(19) 

By inserting (17) and (19) into (11), we arrive at the following relation for the time e w 

after which diffusion fluxes at point x become steady: 

(20) 

It is obvious that relations (17), (19), (20) form the full explicit representation oflocal 
instantaneous diffusion fluxes according to (lOa,b). 

MEAN DIFFUSION FLUXES 

In our case, when the electrode is a straight band of width L oriented perpendicularly 
to the flow direction, the instantaneous diffusion fluxes J(t) are given by the relation 

J(t) = C 1 f: J(x, t) dx. (21) 

Since local stabilization times of diffusion fluxes, ew(x), are, according to (20), 
finite for finite values of x, the total stabilization time of mean fluxes is also finite 

(22a) 

Now let us introduce x", = x",(t), 0 < x", < L as the length of that part of our 
electrode, where, at given time t, the diffusion fluxes have already become steady 

Then, Eqs (lOa,b) can assume the alternate form 

{ 
Js(x) ; 

J(x, t) = 

Ji(t) ; 
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Obviously it holds 

(24a,b) 

After performing the operations outlined in (24a,b) and further appropriate rear­
rangements, the final result is 

(25a,b) 

where Js(x) and Ji(t) are defined in Eqs (17), (19). Because of the equality Jlt oo ) = 
= Js(L), J(t) is continuous also at point t = too' 

DISCUSSION 

Relation (25e) can serve as a 3-parameter regression formula for a statistical proces­
sing of experimental data on the transient limiting diffusion currents from a poten­
tiostatic experiment. The most suitable starting form of the regression formula 
for the data processing is represented by the following modification of (25a) 

(26) 

with the parameters a, b, p. For a given liquid and an electrode, the parameter a can be 
determined from an independent experiment, e.g., by measuring the transient I - t 
characteristics in the unmoving liquid 

a = lim yet) = cO(Dj1t)1/2 . (27) 
t~O 

With known a, the parameters b, p can be found, e.g., graphically or by the linear 
regression in the log (Yja - 1) vs log (t) coordinates. 

The internal consistency of the Y - t data can be verified in several ways: 

1) All experiments with a common liquid should yield the same value of the para­
meter a if the data are processed according to (27). 
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2) Formula (26) should approximate without any systematic deviations the Y - t 

dependence in the whole transient phase of the process, i.e., in the full range of rele­
vant values of Y, 

Y 2 + P a< <--0, 
1 + P 

(28) 

3) Actual experimental values of the steady diffusion flux, J 00 = lim J(t) 

should agree with the extrapolation based on the investigation of the transient 
phase of the process, 

(29) 

in which 

(30) 

can be determined as the time coordinate of the intersection of curve yet) and the 
straight line Y = 0(2 + p)/(1 + p). 

It is worth noting that the value of limiting diffusion fluxes depends only on the 
velocity profile in the immediate vicinity of the electrode surface and that it is quite 
independent of the velocity field outside the concentration boundary layer. The 
instantaneous thickness of this layer, D = D(t), can be estimated approximately 
from the relations 

_ _ {(nDt)1/2 ; 
D = DcolJ -

(DLIA)q ; 
(310,b) 

t > t"" 

For common values of electrode dimensions, liquid diffusivities and rates of flow 
transient times too vary from 0·1 to lOs. This corresponds to the thickness of the 
steady concentration boundary layer of 10-100 J.lm. A first reliable determination 
of in~tantaneous values of J(t) can be expected only in the region of values of J not 
exceeding 10J",. This corresponds to the thickness of the developing concentration 
boundary layer from the range 1-10 J.lm. We can see that the thicknesses of the 
concentration boundary layer are of the same order as estimated thickness ( ~ 10 J.lm) 
of the rheologically anomalous wall layer of microheterogeneous dispersions2 • 

Thus we may expect that the methodS proposed for the diagnostics of the apparent 
slip at the wall can also be used for a more detailed experimental investigation 
of the kinematics of the flow in the immediate vicinity of the wall. 

Thanks are due to N. A. Pokryvaylo and T. V. Yushkina of the Luikov Heat and Mass Transfer 
Institute at the Byelorussian Academy of Sciences, Minsk, U.S.S.R., for discussions that instigated 
the study of this problem. 
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