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The time dependence of mean current densities after a step change in the concentration of a de-
polarizer on the surface of a working electrode was found by solving the equations of the con-
vective diffusion in the Couette flow with anomalous wall effects. The theory is used for deter-
mining the velocity profile in the vicinity of the electrode surface.

Significant changes in flow properties of polymer melts!, polymer solutions?, sus-
pensions® and other rheologically complex fluids in an immediate vicinity of the
wall — the so called wall, resp. slip effects — belong to well-known manifestations
of the microdispersion structure of these liquid materials. These effects may exhibit
a strong influence on results of viscometric measurements! ~* as well as on the
intensity of mass or heat transfer®-®,

Slip effects can be characterized by the velocity of the apparent (positive or nega-
tive) slip along the wall*>** or by the apparent thickness of the wall layer?-*® (which
contains pure solvent or the adsorbed polymer layer). Existing experimental data
whether obtained by viscometric techniques! ~* or by measuring the mass transfer
intensity®>'®, do not enable to distinguish between the two model representations
of the velocity profile at distances from the wall surface smaller than 10—100 pm.

A detailed study of the velocity field in an immediate vicinity of the wall is made
possible by employing methods developed in the electrochemical diagnostics of flow
which have been described generally, e.g., in a survey’. Their main advantage in com-
parison with other techniques for investigating the mass transfer intensity®'S is in the
precise measurement of instantaneous local mass transfer coefficients. The relation
between the observed instantaneous local intensity of the electric current, 7, and the
corresponding diffusion flux J of the active component, the so called depolarizer,
is given by Faraday's law

I =vFJ. (1)
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Since, at conditions of the so called limiting diffusion current, the intensity of trans-
fer of the depolarizer is controlled solely by the convective diffusion and the boundary
conditions are expressed through concentrations of the depolarizer, the theory
of convective diffusion forms the exhaustive theoretical basis for the electrochemical
diagnostics of flow.

We can employ these methods for investigating the velocity profile in an immediate
vicinity of the wall essentially in two ways. The first possibility consists in determining
the longitudinal profile of transfer coefficients at conditions of a steady convective
diffusion; see, e.g., Eq. (3.12) in the survey”. In the second case, we can determine
the time dependence of mean transfer coefficients after the step change in the
depolarizer concentration on the surface of the measuring electrode due to a step
change in the polarizing voltage. This second possibility has been demonstrated
experimentally by determining slip velocities in the flow of bentonite suspensions
in a rotational viscometer with coaxial cylinders®. In this work we formulate the
necessary theory for the simplest form of the working electrode.

THEORETICAL

THE MATHEMATICAL MODEL OF THE PROCESS

Let us consider a non-steady mass transfer between a planar wall, z = 0, and a liquid
flowing paralelly to this wall in the direction of axis x. This steady flow is fully de-
termined by the velocity profile v, = u(z), where z is the distance from the wall.
The part of the wall which is active in the transfer, i.e., the electrode, is an infinite
band of width L and oriented perpendicularly to the direction of the flow, y e
€(—o0; ), xe (0, L).

At time t < 0, the concentration ¢ of the active component (depolarizer) on the
electrode surface is identical with the constant concentration, c,, of the depolarizer
in the surrounding liquid. No mass transfer occurs between the electrode and the
liquid. The reason for the unsteady mass transfer is the step change in the concentra-
tion on the electrode surface at t = 0 from the value of ¢ = ¢, to, let us say, ¢ = 0.

If we neglect the effect of the longitudinal diffusion (which is a reasonable approxi-
mation for all really possible cases of forced convective diffusion in liquids at values
of the diffusion coefficient D below 107° m?[s), the mathematical model of the
process considered is described by the following 3-dimensional linear boundary-
-value problem of the parabolic type for the concentration field ¢ = c(z, x, 1)

Déle—u(z)ée—0c=0 (z>0,t>0,0<x <L) (2)
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with the boundary conditions
c=c¢ for t<0 or z->w or x<0 (3a)

¢c=0 for t>0 and z=0 and x>0 (3b)

This boundary-value problem admits the two following asymptotic solutions,
analogically to the case of the simple shear flow, u(z) = Az (the Léveque configura-
tion), which has been studied earlier®.

Att — 0, the initial asymptotic solution can be found by a simplification of problem
(2), (3a,b) if we assume that d,c = 0. The corresponding asymptote ¢ = ¢;(z, t)
is the solution of the 2-dimensional problem

Dol — dc; =0 (#4)
c;=¢y for t<0 or z— (5a)
=0 for t>0 and z=0. (5b)

At1 — oo, a steady asymptotic solution can be found by a simplification of problem
(2), (3a,b) if we assume that 8,c = 0. The corresponding asymptote ¢ & ¢,(z, x) is the
solution to the 2-dimensional problem

D &Zc; — u(z) éye, = 0 (6)
c,=1cy for x<0 or z- (7a)
¢=0 for x>0 and =0 (7b)

Somewhat surprisingly, nevertheless quite obviously, the complete solution to the
original 3-dimensional problem can be expressed in the form of

ez, 1); t<0O(z,x)
oz, x, 1) = (8a,b)
ez, x); t> 0(z, x)
in all cases when, for each z > 0, x > 0, the equation

¢i(z,0) — ¢(z,x) =0 €]

possesses only one root @ = O(z, x). The parameter © then gives the time of the
stabilization of the concentration at given point (z, x). The corresponding expression
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for-the instantaneous local diffusion fluxes, J = J(x, t), is

D d,c|,—0 = Ji(t); t< O,
J=Docl,—o = , (10a,b)
Do,c|,0 = J(x); t>0,

where @,, = lim O(z, x) can be determined either as the corresponding limit from (9)

z-0

or, more simply, as the root @, of the equation
Ji(0,) — J(x)=0 (11)

which follows from (9) by using L'Hospital’s rule.

SIMILARITY CASES

A simple solution to the 2-dimensional problem (6), (7a,b) of steady-state convective
diffusion can be constructed for velocity profiles represented by the power-law
function

u(z) = Az°. (12)

Here it holds’
e(z, x) = co fo(&)/fp(0) » (13)
E=2z (g%)q (19)

the function f, is the integral of the differential equation f;(y) + y**® fi(y) = 0
with the initial conditions f,(0) = 0, f,(0) = 1 and it can be expressed explicitly as

£) = j “exp (—qs!/) ds = g1 j " exp (~y it a (15)

o (0]
with
qg=1/2+ p). (16)
Obviously it holds f,(c0) = I'(q + 1)/q°.

According to Eqs (10b), (13), steady local diffusion fluxes can be expressed through
the relation

JJ(x) = (¢*9T(q + 1)) coD' ~9(A[x)? = ¢, D* ~9n~V/2(BA[x)*, (17)
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where for § = B(p), it holds
B = q*(n'/?[I(q + 1))'/2. (18)
Similarly, the well-known’ solution to the 2-dimensional problem (4), (5a,b)

yields the following expression for the instantaneous diffusion fluxes during the
initial phase of the transient process:

71) = eofmt|D) 2. (19)

By inserting (17) and (19) into (11), we arrive at the following relation for the time ©,,
after which diffusion fluxes at point x become steady:

0 = O,(x) = D~™(BA[x)" 2. (20)

It is obvious that relations (17), (19), (20) form the full explicit representation of local
instantaneous diffusion fluxes according to (10a,b).

MEAN DirFrusioN FLUXES

In our case, when the electrode is a straight band of width L oriented perpendicularly
to the flow direction, the instantaneous diffusion fluxes J(t) are given by the relation

0

3(1) = L“J-LJ(x, ) dx. 1)

Since local stabilization times of diffusion fluxes, ©,(x), are, according to (20),
finite for finite values of x, the total stabilization time of mean fluxes is also finite

to(L) = D~*(BA[L) 2. (22a)

Now let us introduce x,, = X,(t), 0 < X, < Las the length of that part of our
electrode, where, at given time ¢, the diffusion fluxes have already become steady

Xo(f) = BAt**P/12pe/2 (22b)
Then, Eqs (10a,b) can assume the alternate form

J(x); x < x,(1)
J(x, 1) = (23a,b)
Ji(t); x> x,().
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Obviously it holds

L
L“f J(x)dx; t>1,
0

J(t) = o . (24a,b)
L*I”J@mx+p—x4wqhm;t<%

0o

After performing the operations outlined in (24a,b) and further appropriate rear-
rangements, the final result is

1 t 1+p/2
Ji()f 1+ —— (— ;o t<ty
1+ p\t,

0=1 : (25a,b)
2P w); t> 1,
1+p

where J,(x) and J,(1) are defined in Egs (17), (19). Because of the equality J(t,,) =
= J|(L), J(t) is continuous also at point t = t,.

DISCUSSION

Relation (25¢) can serve as a 3-parameter regression formula for a statistical proces-
sing of experimental data on the transient limiting diffusion currents from a poten-
tiostatic experiment. The most suitable starting form of the regression formula
for the data processing is represented by the following modification of (25a)

Y = 1'2] = a(1 + bt?*?/?) (26)

with the parameters a, b, p. For a given liquid and an electrode, the parameter a can be
determined from an independent experiment, e.g., by measuring the transient I — ¢t
characteristics in the unmoving liquid

a = lim Y(t) = co(DJn)'> . (27)

t—0

With known a, the parameters b, p can be found, e.g., graphically or by the linear
regression in the log (Y/a — 1) vs log (f) coordinates.
The internal consistency of the Y — t data can be verified in several ways:

1) All experiments with a common liquid should yield the same value of the para-
meter a if the data are processed according to (27).
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2) Formula (26) should approximate without any systematic deviationsthe ¥ — ¢
dependence in the whole transient phase of the process, i.e., in the full range of rele-
vant values of Y,

2+p
1+p

a<Y< a, (28)

3) Actual experimental values of the steady diffusion flux, J, = lim J(r)
t— o

should agree with the extrapolation based on the investigation of the transient
phase of the process,

jo=2*»r at'? = 2+p coD'on12(BA|L) (29)
1 + p 1 +p

in which
= [(1 + p) b]7?* = D™P(L/pA)* (30)

can be determined as the time coordinate of the intersection of curve Y(f) and the
straight line Y = a(2 + p)/(1 + p).

It is worth noting that the value of limiting diffusion fluxes depends only on the
velocity profile in the immediate vicinity of the electrode surface and that it is quite
independent of the velocity field outside the concentration boundary layer. The
instantaneous thickness of this layer, & = 6(¢), can be estimated approximately
from the relations

(rD)2 5 t <1,
8 = DcylJ = . (31a,b)
(DLJAY; 1> 1,

For common values of electrode dimensions, liquid diffusivities and rates of flow
transient times 7., vary from 0-1 to 10 s. This corresponds to the thickness of the
steady concentration boundary layer of 10—100 um. A first reliable determination
of instantaneous values of .7(t) can be expected only in the region of values of J not
exceeding 10J . This corresponds to the thickness of the developing concentration
boundary layer from the range 1—10 um. We can see that the thicknesses of the
concentration boundary layer are of the same order as estimated thickness (~ 10 um)
of the rheologically anomalous wall layer of microheterogeneous dispersions?.
Thus we may expect that the method® proposed for the diagnostics of the apparent
slip at the wall can also be used for a more detailed experimental mvestlgatlon
of the kinematics of the flow in the immediate vicinity of the wall.

Thanks are due to N. A. Pokryvaylo and T. V. Yushkina of the Luikov Heat and Mass Transfer
Institute at the Byelorussian Academy of Sciences, Minsk, U.S.S.R., for discussions that instigated
the study of this problem.
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